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Abstract. The relationship of the group SL(2, R) and the NLS− equation is presented. As
a consequence, the SL(2, R) gauge equivalence between the NLS− and the M-HF model is
proved, which provides a new example in geometrically explaining dynamical properties of soliton
equations by the SL(2, R) structure.

1. Introduction

Much evidence has reflected the importance of the relationship between the nonlinear partial
differential equations which can be solved by the inverse scattering method (such as SG, KdV
and MKdV) and the group SL(2, R) of 2 × 2 real matrices with determinant 1 [1–4]. The
indication that there is such a relationship is the existence of three 1-forms {ω1, ω2, ω3} on R2

(the space of the independent variables x and t of the differential equation), whose coefficients
depend only onu (the dependent variable) and its derivatives, such that they satisfy the structure
equations of a pseudospherical surface (see [3,4]):

dω1 = ω3 ∧ ω2 dω2 = ω1 ∧ ω3 dω3 = ω1 ∧ ω2. (1)

Such equations are also known as differential equations describing pseudospherical surfaces
(PSS) or, in other words, PSS equations (see [4–6]). It is well known that the SG, KdV, MKdV,
Burgers’ equation, etc. describe PSS (see [3–6]).

One can verify straightforwardly that (1) is equivalent to saying that

d

(
ψ1

ψ2

)
= 

(
ψ1

ψ2

)
 = 1

2

(
ω2 ω1 − ω3

ω1 + ω3 −ω2

)
∈ sl(2, R) (2)

is a completely integrable system, i.e. d −  ∧  = 0. The sl(2, R)-valued 1-form 

may be regarded as defining a connection on a principal SL(2, R) bundle over R2 and the
soliton equation expresses the fact that the curvature F = d −  ∧  of this connection
vanishes. Such dynamical properties as the existence of an infinite number of conservation laws
and symmetries, and the Bäcklund transformations for PSS equations can be geometrically
explained by use of relations (1), i.e. their SL(2, R) structure (see [2–6]). Indeed, it seems
likely that the group SL(2, R) is the key to understanding the integrability of these soliton
equations.

On the other hand, the nonlinear Schrödinger equation (NLS): iqt + qxx + 2κ|q|2q = 0,
where κ is a real constant distinguishing the equation between attractive (κ > 0) and repulsive
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(κ < 0) type, is a representative example in the theory of integrable systems [7]. The NLS
models a wide range of physical phenomena (one may refer to [8] for a catalogue of its physical
applications). Therefore, the NLS has received a systematical study in recent decades (see,
for examples, [7,9]). As usual, we denote by NLS+ and NLS− the NLS with κ = 1 and −1,
respectively. To the author’s best knowledge, the NLS+ is realized to be related to the group
SU(2) and while the NLS− to the group SU(1, 1) in the existing literature. To our surprise,
the NLS− fits into the SL(2, R) picture, which is what we shall display in this Letter.

2. SL(2, R) structure

Since the NLS− has no light-soliton but dark-soliton solutions, we put q = re−2iρ2t , where ρ

is a positive constant, and get an equivalent equation for r which reads

irt + rxx − 2(|r|2 − ρ2)r = 0. (3)

As pointed out in [7], we need to add the finite density boundary condition, i.e. r → ρ as
x → +∞ and r → ρei2β as x → −∞ (where β is a real constant), in solving (3). Now we
convert (3) into the real form (r(x, t) = u(x, t) + iv(x, t)):

ut + vxx − 2(u2 + v2 − ρ2)v = 0 − vt + uxx − 2(u2 + v2 − ρ2)u = 0. (4)

One may verify directly that system (4) describes PSS with

ω1 = 2udx + (4λu − 2vx)dt

ω2 = −2vdx − (4λv + 2ux)dt

ω3 = −2λdx − [4λ2 + 2(u2 + v2 − ρ2)]dt

(λ is a spectral parameter) and hence admits the SL(2, R) structure as illustrated in section 1.
The corresponding connection 1-form in (2) is as follows:

̃ = {−λσ2 + U} dx +
{−2λ2σ2 + 2λU − (U 2 − ρ2 + Ux)σ2

}
dt

:= L̃(x, t, λ)dx + M̃(x, t, λ)dt (5)

in which

σ2 =
(

0 −1
1 0

)
and U =

( −v u

u v

)
∈ sl(2, R).

Although the NLS− equation and other soliton equations such as the SG, KdV, etc.
have some different physical characteristics (for example, the SG and KdV have light-soliton
solutions, but the NLS− has dark-soliton solutions and no light-soliton solutions), the above
result shows that they have the same SL(2, R) structure. Thus the dynamical properties of
the NLS−, like the existence of infinite number of conservation laws and symmetries, can also
be geometrically interpreted in the same way as those of the SG, KdV, MKdV and Burgers’
equation from the viewpoint of the SL(2, R) structure.

3. SL(2, R) gauge equivalence

TheSU(1, 1)gauge equivalence between the NLS− and the M-HF model was displayed in [10],
which gives a dual geometric interpretation of the well known fact that there is an SU(2) gauge
equivalence between the NLS+ and the HF model [11]. Now, based on the fact displayed in
section 2, we are specially interested in whether there exists an SL(2, R) gauge transformation
between the NLS− and the M-HF model. In the present section we shall give an affirmative
answer to this problem.
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Before proving the conclusion, let us give a brief description of the M-HF model—the
Schrödinger flow of maps into H 2 ↪→ R2+1 (see [10] for details),

St = S×̇Sxx (6)

where S = (s1(x, t), s2(x, t), s3(x, t)) ∈ R2+1 satisfies s2
1 + s2

2 − s2
3 = −1 with s3 > 0,

and ×̇ denotes the pseudo cross product, i.e. for arbitrary two vectors a, b ∈ R2+1, a×̇b =
(a2b3 − a3b2, a3b1 − a1b3,−(a1b2 − a2b1)). System (6) also describes PSS with

ω1 = 2λs2dx + (4λ2s2 − 2λs1s3x + 2λs3s1x)dt

ω2 = 2λs1dx + (4λ2s1 + 2λs2s3x − 2λs3s2x)dt

ω3 = −2λs3dx + (−4λ2s3 − 2λs2s1x + 2λs1s2x)dt

where λ is a spectral parameter. The corresponding connection 1-form  in (2) is

 = λQdx +
{
2λ2Q − λQQx

}
dt := L(x, t, λ)dx + M(x, t, λ)dt (7)

in which

Q =
(

s1 s2 + s3

s2 − s3 −s1

)
∈ sl(2, R)

with Q2 = −I . It is obivous that S = (s1, s2, s3) and Q are determined by each other.
Now we are in a position to prove that there is an SL(2, R) gauge transformation between

the NLS− (4) and the M-HF model (6).
First, suppose that (u, v) is a solution to the NLS− (4) satisfying the finite density boundary

condition. The corresponding connection 1-form ̃ is denoted as in (5). We consider the
following SL(2, R) gauge transformation:

 → ̃ = dAA−1 + AA−1 (8)

or equivalently

L̃(x, t, λ) = A(x, t)L(x, t, λ)A(x, t)−1 + Ax(x, t)A(x, t)
−1 (9)

M̃(x, t, λ) = A(x, t)M(x, t, λ)A(x, t)−1 + At(x, t)A(x, t)
−1 (10)

whereA(x, t) is an SL(2, R)matrix which will be determined later. We hope to prove that is
exactly a connection 1-form (7) after A and Q have been suitably chosen. In fact, substituting
L̃(x, t, λ) = −λσ2 + U and L(x, t, λ) = λQ(x, t) into (9) and comparing the coefficients of
λ in the equation, we obtain

σ2 = −A(x, t)QA(x, t)−1 i.e. Q = −A(x, t)−1σ2A(x, t) (11)

U(x, t) = Ax(x, t)A(x, t)
−1 i.e. ∂xA(x, t) = U(x, t)A(x, t). (12)

Furthermore, substituting M̃ = −2λ2σ2+2λU−(U 2−ρ2+Ux)σ2 andM(x, t, λ) = 2λ2Q(x, t)

−λQ(x, t)Qx(x, t) into (10), the constant term leads to

∂tA(x, t) = − (
U 2 − ρ2 + Ux

)
σ2A(x, t). (13)

Combining (13) with (12), we see that we should make a choice of A(x, t) to be a fundamental
solution to (2) with the  being given by ̃ at λ = 0. Then, the other two coefficient terms of
λ2 and λ in (10) are

−2λ2σ2 + 2λU(x, t) = A(x, t){2λ2Q − λQQx}A(x, t)−1. (14)

Because Q is given by (11), we see that the coefficients of λ2 in the right- and left-hand sides
of (14) coincide automatically. So what remains to show is that the coefficients of λ in the
right- and left-hand sides of (14) are the same, i.e.

QQx = −A(x, t)−12U(x, t)A(x, t). (15)
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Indeed, from (11), we have

Qx = −A−1σ2Ax + A−1AxA
−1σ2A = QA−1Ax + A−1AxA

−1σ2A (16)

and, from the skew commutivity of σ2 and U , we have

A−1AxA
−1σ2A = A−1Uσ2A = −A−1σ2UA = QA−1Ax. (17)

Thus, by substituting (17) into (16), we see Qx = 2QA−1Ax = QA−12UA. Multiplying both
sides of this equation by Q and using Q2 = −I , we arrive at the desired identity (15). This
proves that the connection 1-form  (resp. Q) transformed from the connection 1-form ̃ of
the NLS− (4) by the gauge transformation A is a connection 1-form (resp. a solution) of the
M-HF model (6).

Next, we shall prove that the above process is in fact reversible. Suppose that Q(x, t)

with Q2 = −I is a solution to (6). We want to choose an SL(2, R) matrix A(x, t) such that
detA = 1, σ2 = −AQA−1 and

AxA
−1 =

( −v u

u v

)
:= U (18)

for some functions u and v. Indeed, the general solutions to σ2 = −AQA−1 and detA = 1
are of the form:

A = &θ(x,t)A0 in which θ = θ(x, t) is an arbitrary function

A0 = 1√
2(s3 + 1)

(
s1 s2 − s3 − 1

s2 + s3 + 1 −s1

)

and

&θ =
(

cosθ −sinθ
sinθ cosθ

)
.

From this, it is easy to see that we can choose a suitable θ such that (18) is satisfied. Now put
LA = AxA

−1 +ALA−1 = −λσ2 +U and MA = AtA
−1 +AMA−1 = −2λ2σ2 + 2λU +AtA

−1

with L = λQ and M = 2λ2Q − λQQx . Since Q satisfies the integrability condition,
d −  ∧  = 0 or equivalently Lt − Mx + [L,M] = 0, we have

LA
t − MA

x + [LA,MA] = 0. (19)

Assume AtA
−1 =

(
α β

γ −α

)
for some functions α, β and γ . The vanishing of the

coefficient of λ in (19) leads to α = −ux and β = −γ − 2vx . Then, substituting these
relations into (19), the identification of the two off-diagonal entries of the constant term
produces γ = −vx − 2(u2 + v2) + τ(t) for some function τ(t). Hence, we have

AtA
−1 = −(U 2 + Ux)σ2 + τ(t)σ2. (20)

Note again that the above restriction on A allows an arbitrariness in A of the form A →
&σ(t)A := Ã for an arbitrary function σ(t). In fact, if we denote

Ũ =
( −ṽ ũ

ũ ṽ

)
:= ÃxÃ

−1

under this transformation, then a direct computation shows

Ãt Ã
−1 = − (

Ũ 2 + Ũx

)
σ2 +

(
dσ(t)

dt
+ τ(t)

)
σ2.
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So if we require σ(t) to satisfy dσ(t)/dt = −τ(t) + ρ2, then A can be modified so that for
the new A the second term on the right-hand side of (20) is ρ2σ2. This implies that MA is the
same as M̃ in (5) and hence the 1-form ̃ (resp. (u, v)) constructed from the  is a connection
1-form (resp. a solution) of the NLS− (4). The proof of the existence of an SL(2, R) gauge
equivalence between the NLS− equation and the M-HF model is completed.

Finally, we remark that the above gauge transformation can be geometrically interpreted
as a map that maps a family of PSS determining the NLS− into another one determining the
M-HF model. This provides a new example in geometrically explaining dynamical properties
of soliton equations by the SL(2, R) structure.

This work is partially supported by CNPq-Brazil (postdoctoral programme) and NNSFC
(19631130;973).
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